Step of Proof: mul_cancel_in_eq
12,41
postcript
pdf
Inference at
*
1
2
2
2
I
of proof for Lemma
mul
cancel
in
eq
:
1.
a
:
2.
b
:
3.
n
:
4.
m
:
. ((
m
*
a
) = (
m
*
b
))
(
a
=
b
)
5. (
n
*
a
) = (
n
*
b
)
6.
(
n
> 0)
7. ((-
n
) * (-
a
)) = ((-
n
) * (-
b
))
a
=
b
latex
by ((InstHyp [-
n
] 4)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 2:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
: .....set predicate..... NILNIL
C1:
0 < (-
n
)
C
.
Definitions
t
T
,
,
False
,
i
>
j
,
A
,
P
Q
,
x
:
A
.
B
(
x
)
,
Lemmas
nat
plus
wf
,
member
wf
origin